|
virtual Eigen::Matrix< double, T_Q::DOF, 1 > | dLdq (const T_Q, const T_Q)=0 |
|
virtual Eigen::Matrix< double, T_Q::DOF, 1 > | dLdv (const T_Q, const T_Q)=0 |
|
virtual Eigen::Matrix< double, T_Q::DOF, T_Q::DOF > | JqdLdq (const T_Q, const T_Q)=0 |
|
virtual Eigen::Matrix< double, T_Q::DOF, T_Q::DOF > | JvdLdq (const T_Q, const T_Q)=0 |
|
virtual Eigen::Matrix< double, T_Q::DOF, T_Q::DOF > | JqdLdv (const T_Q, const T_Q)=0 |
|
virtual Eigen::Matrix< double, T_Q::DOF, T_Q::DOF > | JvdLdv (const T_Q, const T_Q)=0 |
|
Syst< T_M, T_Q > const & | operator[] (size_t index) const |
|
Syst< T_M, T_Q > & | operator[] (size_t index) |
|
size_t | size () const |
|
T_M | base (const size_t &i) const |
|
T_Q | pos (const size_t &i) const |
|
void | base (const size_t &i, const T_M &b) |
|
void | pos (const size_t &i, const T_Q &p) |
|
void | baselinspace (const T_M &inf_lim, const T_M &sup_lim, const size_t &n_steps) |
|
void | baselinstep (T_M inf_lim, T_M step_size, size_t n_steps) |
|
int | append2csv (const std::string filename, const std::string sep=",") |
|
int | write2csv (const std::string filename, const std::string sep=",") |
|
template<typename T_M, typename T_Q>
Compute the derivative of the Lagrangian \(L\) with respect to the position variable \(q\), that is
\[ \frac{\partial L}{\partial q}(q,v) = \begin{bmatrix}\frac{\partial L}{\partial q_1} \\\vdots\\\frac{\partial L}{\partial q_N}\end{bmatrix}(q,v) \]