| 
| 
  | StepInternals (Abstract::Problem< T_LIE_ALGEBRA, T_M > &problem) | 
|   | 
| 
void  | operator= (const StepInternals< T_LIE_ALGEBRA, T_N_INTERNAL_STAGES, T_M > &other) | 
|   | 
| 
double  | a_coeffs (int i, int j) const | 
|   | 
| 
void  | setData (T_M h_var, NOXVector< T_LIE_ALGEBRA::DOF > y0_var) | 
|   | 
| 
bool  | setCoeffs (std::vector< double > a, std::vector< double > b) | 
|   | 
| 
void  | setTruncatureOrder () | 
|   | 
| bool  | computeSolution (void) | 
|   | 
| 
const NOXVector< T_LIE_ALGEBRA::DOF >  | reconstruct (const NOXVector< T_LIE_ALGEBRA::DOF > &solution) | 
|   | 
| 
const NOXVector< T_LIE_ALGEBRA::DOF >  | reconstruct () | 
|   | 
| 
bool  | computeA (T_LIE_ALGEBRA &A, const NOXVector< T_LIE_ALGEBRA::DOF > &y) | 
|   | 
| 
bool  | computeJacobianA (std::vector< T_LIE_ALGEBRA > &JA, const NOXVector< T_LIE_ALGEBRA::DOF > &y) | 
|   | 
 | 
| 
NOXVector< T_LIE_ALGEBRA::DOF >  | m_y0 | 
|   | 
| 
T_M  | m_h | 
|   | 
| 
T_LIE_ALGEBRA  | m_solution | 
|   | 
| 
Abstract::Problem< T_LIE_ALGEBRA, T_M > &  | m_problem | 
|   | 
| 
double  | m_a_coeffs [T_N_INTERNAL_STAGES *T_N_INTERNAL_STAGES] | 
|   | 
| 
double  | m_b_coeffs [T_N_INTERNAL_STAGES] | 
|   | 
| 
T_LIE_ALGEBRA  | m_k [T_N_INTERNAL_STAGES] | 
|   | 
| 
unsigned int  | m_order_q | 
|   | 
◆ computeSolution()
template<typename T_LIE_ALGEBRA, int T_N_INTERNAL_STAGES, typename T_M> 
 
Computes the Runge-Kutta method. 
 
 
The documentation for this class was generated from the following file: