Geomi
Public Member Functions | Static Public Member Functions | Static Public Attributes | List of all members
LieGroupBase< T_DERIVED, T_DOF > Class Template Reference

#include <LieGroupBase.hpp>

Inheritance diagram for LieGroupBase< T_DERIVED, T_DOF >:
Inheritance graph
[legend]
Collaboration diagram for LieGroupBase< T_DERIVED, T_DOF >:
Collaboration graph
[legend]

Public Member Functions

T_DERIVED inverse () const
 
void inverted ()
 
void operator*= (T_DERIVED const &g)
 
NOXVector< T_DOF > toNOXVector () const
 
- Public Member Functions inherited from CRTP< T_DERIVED >
T_DERIVED & underlying ()
 
T_DERIVED const & underlying () const
 

Static Public Member Functions

static T_DERIVED Identity ()
 
static const unsigned int dof ()
 

Static Public Attributes

static const unsigned int DOF = T_DOF
 

Detailed Description

template<typename T_DERIVED, unsigned int T_DOF>
class LieGroupBase< T_DERIVED, T_DOF >

This class uses the Curiously Recurring Template Pattern (CRTP). To define an inherited class, do something like class Derived : LieGroupBase<Derived,DOF>

Member Function Documentation

◆ Identity()

template<typename T_DERIVED, unsigned int T_DOF>
static T_DERIVED LieGroupBase< T_DERIVED, T_DOF >::Identity ( )
static
Returns
the element representing the group identity for operation *.

◆ inverse()

template<typename T_DERIVED, unsigned int T_DOF>
T_DERIVED LieGroupBase< T_DERIVED, T_DOF >::inverse ( ) const
Returns
the group inverse of *this.

◆ inverted()

template<typename T_DERIVED, unsigned int T_DOF>
void LieGroupBase< T_DERIVED, T_DOF >::inverted ( )
inline

Inverts the group element *this

◆ operator*=()

template<typename T_DERIVED, unsigned int T_DOF>
void LieGroupBase< T_DERIVED, T_DOF >::operator*= ( T_DERIVED const &  g)

Group operation '*'.

◆ toNOXVector()

template<typename T_DERIVED, unsigned int T_DOF>
NOXVector<T_DOF> LieGroupBase< T_DERIVED, T_DOF >::toNOXVector ( ) const
Returns
the vector representation of the rotation, that is the vector \(\vec v\) such that the rotation of any given vector \(\vec u\) is the result of \(vec v\wedge\vec u\).

The documentation for this class was generated from the following file: